Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato.

نویسندگان

  • M Kesarwani
  • M Azam
  • K Natarajan
  • A Mehta
  • A Datta
چکیده

Oxalic acid is present as nutritional stress in many crop plants like Amaranth and Lathyrus. Oxalic acid has also been found to be involved in the attacking mechanism of several phytopathogenic fungi. A full-length cDNA for oxalate decarboxylase, an oxalate-catabolizing enzyme, was isolated by using 5'-rapid amplification of cDNA ends-polymerase chain reaction of a partial cDNA as cloned earlier from our laboratory (Mehta, A., and Datta, A. (1991) J. Biol. Chem. 266, 23548-23553). By screening a genomic library from Collybia velutipes with this cDNA as a probe, a genomic clone has been isolated. Sequence analyses and comparison of the genomic sequence with the cDNA sequence revealed that the cDNA is interrupted with 17 small introns. The cDNA has been successfully expressed in cytosol and vacuole of transgenic tobacco and tomato plants. The transgenic plants show normal phenotype, and the transferred trait is stably inherited to the next generation. The recombinant enzyme is partially glycosylated and shows oxalate decarboxylase activity in vitro as well as in vivo. Transgenic tobacco and tomato plants expressing oxalate decarboxylase show remarkable resistance to phytopathogenic fungus Sclerotinia sclerotiorum that utilizes oxalic acid during infestation. The result presented in the paper represents a novel approach to develop transgenic plants resistant to fungal infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase.

The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants ...

متن کامل

Reduction of Oxalate Levels in Tomato Fruit and Consequent Metabolic Remodeling Following Overexpression of a Fungal Oxalate Decarboxylase1[W]

The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants ...

متن کامل

Expression and antimicrobial activity analysis of dermaseptin B1 recombinant peptides in tobacco transgenic plants

Recently, new molecular breeding and genetic engineering approaches have emerged to overcome the limitations of conventional breeding methods in generating disease-resistance transgenic plants. The use of antimicrobial peptides (AMPs) to produce transgenic plants resistant to a wide range of plant pathogens has achieved great success. Among huge number of AMPs, Dermaseptin B1 (DrsB1), an antimi...

متن کامل

Construction of Plant Expression Vectors Harboring WRI1 and LPAAT Genes and Its Transformation in Tobacco Plants

In oilseed crops, a number of genes involved in the production of triacylglycerol have been identified that changes in their expression have increase the seed oil content. WRI1 and LPAAT are key genes in this synthetic pathway that their overexpression can increase the oil content. In this study, the expression vectors carrying WRI1 and LPAAT genes were designed and constructed for genetic tran...

متن کامل

Cloning, Overexpression and in vitro Antifungal Activity of Zea Mays PR10 Protein

Background: Plants have various defense mechanisms such as production of antimicrobial peptides, particularly pathogenesis related proteins (PR proteins). PR10 family is an essential member of this group, with antifungal, antibacterial and antiviral activities.Objective: The goal of this study is to assess the antifungal activity of maize PR10 against some of fungal phytopathogens.M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 10  شماره 

صفحات  -

تاریخ انتشار 2000